屈服應力是什么
屈服應力是什么
1、屈服應力是什么
在材料拉伸或壓縮過程中,當應力達到一定值時,應力有微小的增加,而應變卻急劇增長的現象,稱為屈服,使材料發生屈服時的正應力就是材料的屈服應力。
流體的屈服應力是指對于某些非牛頓流體,施加的剪應力較小時流體只發生變形,不產生流動。當剪應力增大到某一定值時流體才開始流動,此時的剪應力稱為該流體的屈服應力。
2、屈服應力的確定方法
在金屬的彈性變形達到極限后,其強度就會發生小范圍的波動,這時也就是塑性變形開始了。這個點即是屈服點,這時所受的應力就叫做屈服應力或屈服強度。屈服點之前一般金屬的變形量與拉力接近一次線性關系,屈服點之后就變為二次線性關系(拋物線),即拉力增加不大,但產生的變形量卻相對較大。
對于多晶體材料而言,材料塑性變形的屈服應力一般取殘余應變為0.2%時所加的應力,即所謂的σ0.2。另一種方法是把應力-應變曲線的彈性階段及塑性階段曲線外推的交點作為屈服應力。
3、屈服強度的影響因素
影響屈服強度的內在因素有:結合鍵、組織、結構、原子本性。
如將金屬的屈服強度與陶瓷、高分子材料比較可看出結合鍵的影響是根本性的。從組織結構的影響來看,可以有四種強化機制影響金屬材料的屈服強度,這就是:(1)固溶強化;(2)形變強化;(3)沉淀強化和彌散強化;(4)晶界和亞晶強化。沉淀強化和細晶強化是工業合金中提高材料屈服強度的最常用的手段。在這幾種強化機制中,前三種機制在提高材料強度的同時,也降低了塑性,只有細化晶粒和亞晶,既能提高強度又能增加塑性。
影響屈服強度的外在因素有:溫度、應變速率、應力狀態。
隨著溫度的降低與應變速率的增高,材料的屈服強度升高,尤其是體心立方金屬對溫度和應變速率特別敏感,這導致了鋼的低溫脆化。應力狀態的影響也很重要。雖然屈服強度是反映材料的內在性能的一個本質指標,但應力狀態不同,屈服強度值也不同。
拉力試驗機中抗拉強度和屈服強度的區別
拉力試驗機廣泛應用于各類五金、金屬、橡塑膠、鞋類、皮革、服裝、電線、電纜、端子等各類材料,測試其拉伸,撕裂,剝離,抗壓,彎曲等材料研發,檢驗測試,功能其全,用途廣泛。
1、抗拉強度:當鋼材屈服到一定程度后,由于內部晶粒重新排列,其抵抗變形能力又重新提高,此時變形雖然發展很快,但卻只能隨著應力的提高而提高,直至應力達最大值。此后,鋼材抵抗變形的能力明顯降低,并在最薄弱處發生較大的塑性變形,此處試件截面迅速縮小,出現頸縮現象,直至斷裂破壞。鋼材受拉斷裂前的最大應力值稱為強度極限或抗拉強度。
2、屈服強度:當應力超過彈性極限后,變形增加較快,此時除了產生彈性變形外,還產生部分塑性變形。當應力達到B點后,塑性應急劇增加,曲線出現一個波動的小平臺,這種現象稱為屈服。這一階段的最大、最小應力分別稱為上屈服點和下屈服點。
屈服強度的工程意義
屈服強度的工程意義:傳統的強度設計方法,對塑性材料,以屈服強度為標準,規定許用應力[σ]=σys/n,安全系數n一般取2或更大,對脆性材料,以抗拉強度為標準,規定許用應力[σ]=σb/n,安全系數n一般取6。
需要注意的是,按照傳統的強度設計方法,必然會導致片面追求材料的高屈服強度,但是隨著材料屈服強度的提高,材料的抗脆斷強度在降低,材料的脆斷危險性增加了。
屈服強度不僅有直接的使用意義,在工程上也是材料的某些力學行為和工藝性能的大致度量。例如材料屈服強度增高,對應力腐蝕和氫脆就敏感;材料屈服強度低,冷加工成型性能和焊接性能就好等等。因此,屈服強度是材料性能中不可缺少的重要指標。通常采用試驗機來測試屈服強度。